
CERN-TH/2002-271
TP-UŚl-01/02

MC-TESTER: a universal tool
for comparisons of Monte Carlo predictions

for particle decays in high energy physics†

P. Golonkaa,b, T. Pierzchałac, Z. Wa̧sd,e

a Faculty of Nuclear Physics and Techniques, University of Mining and Metallurgy
Reymonta 19, 30-059 Cracow, Poland.

bCERN, EP/ATR Division, CH-1211 Geneva 23, Switzerland.
c Institute of Physics, University of Silesia,
Uniwersytecka 4, 40-007 Katowice, Poland.

dInstitute of Nuclear Physics, Radzikowsiego 152 , 31-342 Cracow, Poland.
eCERN, Theory Division, CH-1211 Geneva 23, Switzerland.

Abstract
Theoretical predictions in high energy physics are routinely provided in the form of

Monte Carlo generators. Comparisons of predictions from different programs and/or dif-
ferent initialization set-ups are often necessary.MC-TESTER can be used for such tests of
decays of intermediate states (particles or resonances) in a semi-automated way.

Our test consists of two steps. Different Monte Carlo programs are run; events with de-
cays of a chosen particle are searched, decay trees are analyzed and appropriate information
is stored. Then, at the analysis step, a list of all found decay modes is defined and branch-
ing ratios are calculated for both runs. Histograms of all scalar Lorentz-invariant masses
constructed from the decay products are plotted and compared for each decay mode found
in both runs. For each plot a measure of the difference of the distributions is calculated and
its maximal value over all histograms for each decay channel is printed in a summary table.

As an example ofMC-TESTER application, we include a test with theτ lepton decay
Monte Carlo generators,TAUOLA andPYTHIA. TheHEPEVT (or LUJETS) common block is
used as exclusive source of information on the generated events.

Submitted to Computer Physics Communications.

CERN-TH/2002-271
TP-UŚl-01/02
version 1.1, December 2002

† This work is partially supported by the Polish State Committee for Scientific Research (KBN) grants 2
P03B 001 22, 5P03B10721 and also by the European Community’s Human Potential Programme under
contract HPRN-CT-2000-00149 Physics at Colliders.

Contents

1 Introduction 4

2 Installation and generation step 5

3 Analysis 6
3.1 Description of a single plot .7

4 Shape Difference Parameter calculation algorithms 7
4.1 How to set a particular test .10
4.2 MCTest01 − exclusive surface .11

4.2.1 Detailed definition .11
4.2.2 Results and interpretation ofMCTest01 11

4.3 MCTest02 − non-uniformity of the histograms ratio14
4.3.1 Detailed definition .14
4.3.2 Results and interpretation ofMCTest02 15

4.4 MCTest03− Kolmogorov compatibility test16

5 Package organization 16
5.1 Directory tree .16
5.2 Libraries .17
5.3 Format and syntax of theSETUP.C file . 17
5.4 User-definedShape Difference Parameter algorithms 19
5.5 How to makeMC-TESTER run with other generators19

5.5.1 The case ofF77 . 19
5.5.2 The case ofC++ . 20

6 Outlook 21
6.1 Recent updates and extensions .22

A Appendix: MC-TESTER setup and input parameters 24
A.1 Format and use of theSETUP.C file . 24
A.2 Definition of parameters in theSETUP.C file 24

A.2.1 Setup::decayparticle . 24
A.2.2 Setup::EVENT .24
A.2.3 Setup::stage .25
A.2.4 Setup::gen1desc1 , Setup::gen1desc2, Setup::gen1desc3 25
A.2.5 Setup::gen2desc1, Setup::gen2desc2, Setup::gen2desc3 26
A.2.6 Setup::result1path . 26
A.2.7 Setup::result2path . 26
A.2.8 Setup::ordermatters .26
A.2.9 Setup::nbins .27
A.2.10 Setup::binmin . 27

1

A.2.11 Setup::binmax . 28
A.2.12 Setup::SetHistogramDefaults(int nbins, double minbin, double maxbin); 28
A.2.13 Setup::gen1path . 28
A.2.14 Setup::gen2path . 29
A.2.15 Setup::useranalysis .29
A.2.16 Setup::usereventanalysis . 29
A.2.17 Setup::SuppressDecay(int pdg); .29

A.3 F77 interface ofMC-TESTER. 30
A.3.1 SUBROUTINE MCSETUP(WHAT, VALUE) 30
A.3.2 SUBROUTINE MCSETUPHBINS(VALUE) 30
A.3.3 SUBROUTINE MCSETUPHMIN(VALUE) 30
A.3.4 SUBROUTINE MCSETUPHMAX(VALUE) 31
A.3.5 SUBROUTINE MCSETUPHIST(NBODY,NHIST,NBINS,MINBIN,MAXBIN) 31

2

PROGRAM SUMMARY

Title of the program: MC-TESTER, version 1.1
Computer: PC, two Intel Xeon 2.0 GHz processors , 512MB RAM
Operating system: Linux Red Hat 6.1, 7.2, and also 8.0
Programming language used: C++, FORTRAN77: gcc 2.96 or 2.95.2 (also 3.2) compiler suite
with g++ andg77
Size of the package:
7.3 MB directory including example programs (2 MB compressed distribution archive), without
ROOT libraries (additional 43 MB).
Additional disk space required:
Depends on the analyzed particle: 40 MB in the case ofτ lepton decays (30 decay channels,
594 histograms, 82-pages booklet).
Keywords:
particle physics, decay simulation, Monte Carlo methods, invariant mass distributions, pro-
grams comparison
Nature of the physical problem:
The decays of individual particles are well defined modules of a typical Monte Carlo program
chain in high energy physics. A fast, semi-automatic way of comparing results from different
programs is often desirable, for the development of new programs, to check correctness of the
installations or for discussion of uncertainties.
Method of solution:
A typical HEP Monte Carlo program stores the generated events in the event records such as
HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches
for the decays of the particle under study. The list of the found decay modes is successively
incremented and histograms of all invariant masses which can be calculated from the momenta
of the particle decay products are defined and filled. The outputs from the two runs of distinct
programs can be later compared. A booklet of comparisons is created: for every decay channel,
all histograms present in the two outputs are plotted and parameter quantifying shape difference
is calculated. Its maximum over every decay channel is printed in the summary table.
Restrictions on the complexity of the problem: For a list of limitations see section 6.
Typical running time:
Varies substantially with the analyzed decay particle. On a PC/Linux with 2.0 GHz processors
MC-TESTER increases the run time of theτ-lepton Monte Carlo programTAUOLA by 4.0 seconds
for every 100 000 analyzed events (generation itself takes 26 seconds). The analysis step takes
13 seconds; LATEX processing takes additionally 10 seconds. Generation step runs may be
executed simultaneously on multi-processor machines.
Accessibility:
web page:http://cern.ch/Piotr.Golonka/MC/MC-TESTER
e-mails: Piotr.Golonka@CERN.CH,

T.Pierzchala@friend.phys.us.edu.pl,
Zbigniew.Was@CERN.CH.

3

1 Introduction

In the phenomenology of high-energy physics, the question of establishing uncertainties for
theoretical predictions used in the interpretation of the experimental data is of high importance.
For example, at the time of the experiments at LEP several workshops (see [1]) were devoted
to this question. As the required precision is often high, theoretical predictions need to be
presented in the form of Monte Carlo event generators; all detector effects can therefore be
easily combined with the theoretical ones, using rejection methods.

Whenever possible, theoretical predictions are separated into individual building blocks,
which are later combined into complicated Monte Carlo generator systems for the complete
predictions. A good example of such a building block is the generation of a decay of a particle
such as theτ lepton. While working onTAUOLA [2–4], we devised a set of tests that performed
comparisons of results produced by two versions of the program. We realized that a test that
compares all distributions of invariant masses built from the decay products of theτ lepton (in
a particular decay channel) gives a valuable and quite complete answer.

In the present paper we document a new tool,MC-TESTER, which tests/compares in an auto-
mated way particle decays generated by two MC programs. The analysis consists of two steps.
First, appropriate data have to be collected from a run of every tested program. To this end
the libraries ofMC-TESTER have to be loaded, a testing routine called, and an identifier of the
particle to be analyzed has to be provided. Event after event,MC-TESTER will read data from
consecutive event records (such asHEPEVT) and look for decays of the tested particle. Once
found, a decay channel is identified from its decay products. On the first occurrence of the
particular decay channel, it is added to a list of found decay modes; all histograms for invariant
masses that can be formed of decay products are initialized and filled for the first time. For later
occurrences, appropriate histograms are simply filled. At the end of the run all information is
stored to a file.

In the second step, the results obtained from the two generation runs from two Monte Carlo
programs are compared and a booklet is created. It includes a table of decay modes found in the
two runs with corresponding branching ratios. For matching decay channels (present in outputs
from both generators), comparison plots are provided. For each invariant mass distribution,
histograms from the two runs are plotted; their ratio (after normalization) is also plotted in the
same frame. TheShape Difference Parameter (SDP) is calculated and printed on the plot
as well. The maximum ofSDP over all plots for the given decay channel is printed in the table
of decay modes as well.

The paper is organized as follows: section 2 explains how the first step of the program (gen-
eration) should be installed and executed. Section 3 explains the second step of theMC-TESTER
action, namely the analysis; a description of the program output is also given in that section.
Section 4 includes a description of the available algorithms forSDP calculation. Section 5 is
devoted to the description of the package, directory organization, and technical information on
its use; further details and explanation of input parameters may be found in the appendix. Sec-
tion 6 closes the documentation with a discussion of package limitations and possible future
extensions.

4

2 Installation and generation step

MC-TESTER is distributed in a form of an archive containing source files. Currently only Linux
operating system is supported: other systems may be supported in the future if sufficient interest
is found. We have checkedMC-TESTER on Red Hat 6.1 and Red Hat 7.2 installations. In order
to runMC-TESTER one needs:

• gcc 2.96 or 2.95.2 compiler suite withg++ andg77 installed,

• ROOT package properly installed and set up (please refer to [5] orROOT INSTALL file in
doc/ subdirectory for details),

• LATEX package.

After unpacking, one needs to compileMC-TESTER libraries usingmake command executed in
its main directory. If completed successfully, the user is instructed how to proceed with the
example tests. Examples for theMC-TESTER use based on theτ decay generatorsTAUOLA and
PYTHIA are distributed together with the package; they reside in theexamples-F77/ subdirec-
tory.

MC-TESTER distribution is a complete, ready-to-use testing environment, with subdirectories
dedicated to generation and analysis steps (see section 5.1 for details), and run-time parameters
controlled by simple configuration files (SETUP.C - see section 5.3 and the Appendix).

TheTAUOLA test (located inexamples-F77/tauola/) is intended to show howMC-TESTER
can be used to compare two versions of the same generator. The versions (CLEO and ALEPH)
have been prepared usingTAUOLA-PHOTOS-F package [6] and are placed in thegen1/ and
gen2/ subdirectories.

In order to prepare this example,make in examples-F77/tauola/ directory should be
executed. For two versions ofTAUOLA, demo programs linked with theMC-TESTER’s libraries
will be prepared, compiled and linked (gen1/tautest.exe andgen2/tautest.exe), and runs
are ready for execution withmake run1 or make run2, respectively. Alternatively, one may go
to the subdirectorygen1/ or gen2/ and execute./tautest.exe there.

TheFORTRAN demo programs (examples-F77/tauola/gen1/tautest.f and
examples-F77/tauola/gen2/tautest.f) created fromexamples-F77/tauola/tautest.F
at the pre-compilation step, initialize theTAUOLA andMC-TESTER. In particular, demos are set to
generate 100 000 events. In the code, one can easily find (see also sections 5.5.1 and A.3.1) how
the routines forMC-TESTER’s operation:MCTEST(MODE), MCSETUP(WHAT,VALUE) are called.
At the end of generation, theMC-TESTER finalization routineMCTEST(1) stores the output file:
mc-tester.root. The output data files (gen1/mc-tester.root andgen2/mc-tester.root)
are then ready to be transferred to theMC-TESTER’s analysis part (see Section 3) using e.g.make
move1, make move2 commands.

In order to perform a comparison test ofτ decay inPYTHIA, one needs to compile and
execute the code placed inexamples-F77/pythia/. To compile thePYTHIA library and the
main example program (the source code inpythiatest.f) one can execute themake command.
To run it, the commandmake run can be executed (or directlypythiatest.exe). By default
10 000 events are set to be generated. As in the case of theTAUOLA example program, the output

5

histograms are stored in themc-tester.root file and may be copied to the analysis directory
using themake move1 or make move2 commands.

It is possible to control theMC-TESTER’s parameters using theSETUP.C file. The syntax of
the file is described briefly in section 5.3, and in the Appendix A.2. TheSETUP.C file needs to
be put in the directory from which generation program is being executed (usually it is the same
directory in which binary executable file exist). Examples ofSETUP.C files are already present
in example generation directories: they are used to set the description of the generator being
run.

The output data file is usually put in the directory in which generation program was exe-
cuted. The name of the file and the path may however be changed using theSETUP.C file (see
A.2.6, A.2.7).

The issue of theMC-TESTER use with “any” Monte Carlo generators is addressed in sec-
tion 5.5. We want to stress, that it is relatively easy to useMC-TESTER with a Monte Carlo
event generator, which the user wants to test: it is sufficient to link theMC-TESTER’s libraries,
theROOT libraries and to insert three subroutine calls into the user’s code: for theMC-TESTER
initialization, finalization and analysis.

For the users interested in trying only the analysis part ofMC-TESTER (Section 3), and
to avoid a lengthy generation phase, a ready-to-use data files are provided in the directory
examples-F77/pre-generated/. There, theMC-TESTER’s mc-tester.root files (produced
by very long runs withTAUOLA andPYTHIA), are stored. To copy the files to the directories of
the analysis step, the commandmake move can be used, similarly as explained above.

3 Analysis

Data filesmc-tester.root, referred in the previous section are used to produce a booklet
(Fig.1 and Fig.2) - a final results of theMC-TESTER action. For this purpose the directory
analyze/ is prepared. Unlike the rest ofMC-TESTER, the analysis code is not stored in the
MC-TESTER’s libraries, but in a set ofC++/ROOT macro routines. These routines make use of the
MC-TESTER libraries and expect them in directorylib/ .

The two data files from the generation step are expected to be found in theanalyze/prod1/
andanalyze/prod2/ directories respectively (these locations and many more aspects of the
analysis may be changed using theSETUP.C file, see section 5.3).

A simplemake command in theanalyze/ directory needs to be executed. As a result, the
Postscript filetester.ps with the complete booklet is produced.

The booklet consist of:

• The title page giving details of performed tests, ID of a tested particle, names and a short
description of the two programs under test, numbers of generated events and numbers of
decay channels found in the two runs; see Fig. 1(a).

• The table of decay channels found with branching ratios from the two runs and maximum
of the Shape Difference Parameter for all histograms defined for the channel; see
Fig. 1(b),

6

• The table of content indicating a page number where plots for a given channel start.

• Plots of histograms of all invariant masses for all matching decay channels found in the
two runs; see Fig. 2(a).

Along with the booklet, aROOT output filemc-results.root is generated. It may be an-
alyzed further, by the advanced user. A complete set of all plots of the booklet (in the.eps
format) is also stored in subdirectorybooklet/ .

3.1 Description of a single plot

The plots such as in Fig. 2(b) are the main part of the booklet. They allow for the visual
estimation how a certain mass distribution compares between the two programs. There are
three histograms in each plot. Two histograms with the distributions from the first and the
second generator, are plotted in red and green (or darker/lighter grey), and a histogram of the
ratio of the two (in black). The red and green colors are used consistently throughout the booklet
to refer to the generators.

The left axis on the plot refers to the histogram of the ratio. This histogram is obtained from
the division of the normalized histograms, therefore if the shapes of the two mass histograms
match (even though they differ in statistic), the division histogram will be up to statistical fluc-
tuations matching flat distribution at 1.0 . The division histogram is the first, visual comparison
test.

The right axis of the plot refers to the contents of the mass histograms, therefore represents
the number of entries in every single mass bin. These histograms are not normalized, and large
differences in statistical samples will immediately show up. One will observe that the histogram
with smaller number of entries will occupy small (negligible) part of the plot. The range on the
right axis is chosen such, that both histograms will show up in full.

The total number of events found for a given channel in the runs of the two generators is
printed in the booklet, just at the beginning of a section including plots for a channel (see Fig.
2(a)).

In the top-right corner of the plot (on yellow background),SDP (the Shape Difference
Parameter) is printed.

4 Shape Difference Parameter calculation algorithms

An analysis performed byMC-TESTER consists of comparisons of distributions in every possi-
ble invariant mass constructed over every (sub-)set of decay products of every decay channel.
Already in our example of the comparison of the decays of theτ lepton, we encounter 30 dis-
tinct decay modes. Realizing that for a typical (5 body) decay channel the algorithm defines 26
distinct distributions, we may be faced up with an analysis of thousands of plots. It is there-
fore convenient to define a single measure (which we call theShape Difference Parameter
(SDP)), measuring the difference between the same distributions from the two programs. Later,
for every analyzed channel, the maximum ofSDP over all pairs of distributions, from the two

7

(a) The first page of analysis booklet.

(b) The table of found decay channels.

Figure 1: Example of booklet’s informational pages produced at analysis step. At the bottom of
the table 1(b), theT1, T2 coefficients quantifying the difference in all decay channels combined
are printed (see chapter 6.1 for details).

8

(a) The example of a page with histograms.

(b) The example of a histogram.

Figure 2: Examples of plots produced at analysis step.

9

programs can be found and printed in the review table of our package (in the last column in the
Fig.1(b)).

We admit, that we were unable to find any universal, reasonable choice forSDP. Depending
on the user’s particular need, the choice of an algorithm will be different. Also, shapes of the
distributions (which depends on the decaying channel) may affect the choice. On the other
hand, the main purpose ofSDP is to draw user attention to decay channel where the differences
of predictions from the two programs differ maximally. That is why, we believe, the choice of
SDP in many cases will not be of prime importance. At present, in our package we provide three
options, which we have found useful in work on theTAUOLA Monte Carlo. For unsatisfied user,
they will serve, at least, as examples to develop a new one. Let us list available tests:

• MCTest01 − exclusive surface (subsection 4.2),

• MCTest02 − non-uniformity of the histograms ratio (subsection 4.3),

• MCTest03 − Kolmogorov compatibility test (subsection 4.4).

In the following subsections, we provide intuitive definitions, followed by the detailed ones.
Some illustrative examples, helpful to understand differences can be found in subsections 4.2.2
and 4.3.2.

4.1 How to set a particular test

The source code for the three tests included withMC-TESTER are placed insrc/ directory, and
compiled in thelibMCTester library.

The choice of the appropriate code is done in the fileSETUP.C of the directoryanalyze/ .
To employ one of the provided tests, it is sufficient to specify it (by its name) in theSETUP.C

file, i.e.
Setup::user analysis = MCTest02;
The user may provide a custom analysis code in form of aROOT macro (refer to section 5.4).

We recommend putting the code in a single file in the directoryanalyze/ . An example of the
user-provided code may be found inanalyze/MyAnalysis.C. One performs this step using the
following code in theSETUP.C file:

gInterpreter->LoadMacro("./MyAnalysis.C");
The full path name to the analysis code may be specified as a parameter (in this case: the

file MyAnalysis.C from the current directory.
One should note that loading the macro file does not automatically select the test function to

be used byMC-TESTER. After loading the macro, one needs to specify explicitly the name of the
function to be used, as directed above. Therefore, one may have a set of various test functions
in a single file and then select them by name.

As an example, assume we have theMyTests.C file with the following functions defined in
it:

• double CompatibilityTest(TH1D*,TH1D*);

10

• double MyMCTest(TH1D*,TH1D*);

• double AreaTest(TH1D*,TH1D*);

To load this macro file and select theMyMCTest function, one needs to put the following lines
in theSETUP.C file:

gInterpreter->LoadMacro("./MyTests.C");
Setup::user analysis = MyMCTest;

4.2 MCTest01 − exclusive surface

This test determines the size of the area under the two compared, normalized to unity his-
tograms, which is not simultaneously under the two of them. Estimates of the statistical fluctu-
ations are subtracted bin-by-bin. The test givesSDP equal to 0 when the compared histograms
are statistically identical, andSDP equals 2 when the histograms are completely disjoint.

4.2.1 Detailed definition

For every bin of the two histograms (of the equal number of bins) we calculate,

∆i = |1Ni − 2Ni | ; 1Ni = 1ni

∑ j 1n j
; 2Ni = 2ni

∑ j 2n j
; (1)

where1ni and2ni denote the content of the bini respectively of the histogram no.1 and no.2,
the∆i – the bin content difference is prone to statistical fluctuations. The standard deviation of
the bin contents equals

1,2σi = 1,2Ni ·

√
(1− 1,2Ni)

1,2ni
. (2)

As in the case of the tests of the Monte Carlo programs, generation of sufficiently large sample
is usually not a problem, to avoid statistical fluctuations, we will take instead of∆i ,

∆̃i =
{

∆i −κ 1σi −κ 2σi : ∆i −κ 1σi −κ 2σi ≥ 0
0 : ∆i −κ 1σi −κ 2σi < 0.

(3)

Finally:
SDP = ∑

i
∆̃i , (4)

and as default we takeκ = 3.

4.2.2 Results and interpretation ofMCTest01

The geometrical principle of the test is to estimate an exclusive part of the area under the two
(normalized to 1) histograms. That is, this part under each of them, which isnotsimultaneously
under the another. A convenient solution to put a result and a statistical error into a single
number requires some modification. We choose simply to subtract, bin by bin, the statistical

11

Figure 3:Comparison of two histograms withSDP = 0.177 (in the limit of infinite samplesSDP
would equal0.20).

Figure 4:Comparison as in the previous figure, but samples1000times smaller.SDP= 0.00139
now.

error for the bin contribution toSDP as given in formula (3). With the increasingκ the test will
be less sensitive to the statistical fluctuations of the compared histograms, and at the same time
it will tend to more and more underestimateSDP. In the limit of infinite samples the results will
be independent ofκ.

12

Figure 5:Two completely disjoint histograms.SDP = 1.97.

Figure 6:Two completely disjoint histograms.SDP = 1.46, samples1000times smaller than in
the previous figure.

In Fig. 3 we compare two histograms of 107 entries, generated from the analytic distribu-
tions of the disjoint surface of 0.2 . For this we obtainSDP=0.177. SDP is slightly underesti-
mated. In Fig. 4 for the histograms generated from the same analytic distributions, but with
104 entries we obtainSDP=0.00139. This is not a surprise because of the small statistics. With
our assumption ofκ = 3 the histograms are found to be almost statistically equal. If our choice

13

wereκ = 1, the test would returnSDP=0.0746. The large numerical size ofSDP is originated
from statistical fluctuation.

In our second example, we take two analytic distribution which are completely disjoint and
we generate from them the histograms (Fig. 5) of the samples of 106 events.SDP=1.97 in this
case. Even for such a high statistic and the clear separation, our test does not provideSDP=2. If,
as in Fig. 6, we take 1000 events,SDP=1.46.

Note that our test, in general, provides the larger and largerSDP with the increasing samples;
on the other hand,SDP would decrease with the increasing number of bins and the constant
statistics.

4.3 MCTest02 − non-uniformity of the histograms ratio

The aim of this test is to measure, how far from a constant is a ratio of two histograms. The
difference of this test with respect to the previous one is, that it weights equally all bins, and is
not focused on the most populated bins as in the previous case. The test returnsSDP=0 when the
compared histograms are statistically identical. In general case, in the limit of infinitely large
samples, it returns the surface between two lines: the ratio of the two (normalized) histograms
(see e.g. the black line and the left scale on Fig.2(d)) and the constant line at 1.

4.3.1 Detailed definition

The test goes bin-by-bin. For every bin we calculate first1,2Ni and1,2σi as given in formulas
(1) and (2) . Later, to remove statistical fluctuations, we shift the results toward each other

˜1Ni =
{

1Ni −κ 1σi : 1Ni − 2Ni ≥ 0
1Ni +κ 1σi : 1Ni − 2Ni < 0,

(5)

and
˜2Ni =

{
2Ni −κ 2σi : 2Ni − 1Ni ≥ 0
2Ni +κ 2σi : 2Ni − 1Ni < 0.

(6)

Finally, if the shift was larger than the original difference, we set the contribution of the bin
to zero, with theΘi function:

Θi =
{

0 : (2Ni − 1Ni)(˜2Ni − ˜1Ni) < 0
1 : (2Ni − 1Ni)(˜2Ni − ˜1Ni)≥ 0.

(7)

It is now straightforward to calculate

SDP =
1

Nbin
∑
i

(˜1Ni

˜2Ni
+

˜2Ni

˜1Ni
−2

)
Θi , (8)

whereNbin denotes the number of bins in the histogram.

14

Figure 7: For these two histograms (red and green)MCTest01 gives SDP = 0.4881, and
MCTest02 givesSDP = 1.0014.

Figure 8: For these two histogramsMCTest01 givesSDP = 0.0235, andMCTest02 givesSDP
= 0.0179. Statistic is 200 times smaller than inFig.7.

4.3.2 Results and interpretation ofMCTest02

To better visualize the difference betweenMCTest01 andMCTest02 we provide Figs. 7 and 8.
The distributions in Fig. 7 give smallerSDP from MCTest01 than fromMCTest02. Fig. 8 shows

15

the histograms generated from the same analytical distribution, but with the 200 times lower
statistics. The situation is now reversed andSDP is larger withMCTest01. This is because in the
less populated bins, even though the two distributions differ by a sizable factor, the statistics is
small and the differences drop out as statistically not significant.

4.4 MCTest03− Kolmogorov compatibility test

In some applications, such as checks of proper installation into broader environment of a code
for the particle decay, we may be interested if indeed after installation, all distributions remained
unchanged. For that purpose Kolmogorov compatibility test is suitable. It calculates a probabil-
ity p that the two histograms have the same shape. As this test is implemented and documented
as a standard function ofROOT [7,8], we will use it for the time being, and skip a description as
well. We simply takeSDP=1− p. Test returnsSDP=0 if two distributions are identical, in other
cases it returns the probability of being different.

5 Package organization

This section contains technical details concerningMC-TESTER and should be used as a quick
reference. Further details may be found in the Appendix and in files placed in thedoc/ subdi-
rectory.

5.1 Directory tree

doc/ - contains documentation.

examples-F77/- includes example programs inF77:

tauola/ - using theTAUOLA generator;

pythia/ - using thePYTHIA/JetSet generator;

pre-generated/ - results of generation with high statistics.

examples-C++/ - examples inC++ (none at the moment).

analyze/ - analysis step is performed in this directory, the analysis code is contained in a set of
ROOT macros:

prod1/

prod2/ - contains data files (mc-tester.root) with the results of the generation phase
produced by the two compared generators should be put here;

booklet/ - is created during the analysis step. It contains the result histograms in the form
of .epsfiles.

HEPEvent/ - includes universalC++ interface toF77 event records (i.e. HEPEVT,LUJETS,PYJETS).

16

include/ - links to C++ include files.

lib/ - contains compiled libraries needed byMC-TESTER. Both the static and dynamic libraries
are provided.

src/ - contains the source code forMC-TESTER.

platform/ - platform-dependent support files; currently only forLinux.

5.2 Libraries

From a point of view of a programmer,MC-TESTER is seen as a set of two libraries:libMCTester
andlibHEPEvent. These libraries may be found in thelib/ directory.

The librarylibMCTester contains all the code needed by the generation step; it is also
required at the analysis step, i.e. it contains routines for theShape Difference Parameter
estimator.

ThelibHEPEvent library contains a unifiedC++ interface for variousF77 HEP Monte Carlo
event record standards [9]. Its first implementation was realized during work onphotos+ [10],
a C++ implementation ofF77 algorithm for QED radiative corrections [11, 12]. In the current
version of theMC-TESTER, it provides a unified access to theHEPEVT (HEPEVT with 4000DOUBLE
PRECISION matrices is used1) , LUJETS andPYJETS standards, enablingMC-TESTER to be used
with variety of Monte Carlo event generators, based on those event record standards.

We intend to extend this interface (and thereforeMC-TESTER) to serve various future event
standards, used byF77, C++ or Java -based event generators.

The source code oflibMCTester is placed in thesrc/ directory;libHEPEvent is stored in
theHEPEvent/ directory.

5.3 Format and syntax of theSETUP.C file

TheSETUP.C file is aC++ ROOT macro file, which controls theMC-TESTER’s settings. It is read
and executed during initialization of both phases of aMC-TESTER run: the generation and the
analysis. The file needs to be put in the same directory in which a run is executed, i.e. in
the directory in which executable is being run for the generation phase, and in theanalyze/
directory in the case of analysis. The setup file needs to have a correctC++ syntax. Although
any code (acceptable byROOT) may be put into the file, the main purpose of the file is to set
up theMC-TESTER parameters. Majority of these parameters are stored in a static class called
Setup, thus the most common lines inside theSETUP.C file have the form:
Setup::SomeSetting=somevalue;
The SETUP.C file needs to begin with ”{” and end with ”}” characters. No definition of a
function name is needed. Comment characters that may be used insideSETUP.C are the ones
allowed byC++: ”//” (two slashes) marks out that a string following them is a comment; ”/*”
starts a comment which may span over any number of lines, and needs to be terminated by the

1To tune the size or precision of theHEPEVT or LUJETS/PYJETS used inMC-TESTER, to match your code, see
README in theinclude/ directory.

17

”*/” string. All text contained between these two markers is treated as a comment. Comments
in the form of ”//” may be nested inside ”/* */” comments. Each line that is not a comment,
i.e. that is aC++ statement, needs to be ended by the semicolon ”;” character.

A trivial SETUP.C file, may look as follows:
{
/**************************************/
/* This is SETUP.C file for MC-TESTER */
/**************************************/
// Some dummy variable
double x=1.2345;
}
One may put any call to a standardC library function inside theSETUP.C file, i.e. one may

freely use theprintf() call or theC++ cout< < streams to output strings of the text to the
screen. Alternatively, one can read the content of any file using thefopen, fscanf, fclose
calls, etc. Usually, there is no need to put#include statements, as majority of them is already
preloaded by theROOT interpreter.

The most important settings are presented in the Table 1.

Variable C++ Type Default Description

Setup::decayparticle int 15 (τ−) PDG code of particle,
which decays we analyze

Setup::EVENT HEPEvent* HEPEVT event record format:
(HEPEVT, LUJETS, PYJETS)

Setup::gen1desc1 char* three lines of text
Setup::gen1desc2 char* describing
Setup::gen1desc3 char* the first generator
Setup::gen2desc1 char* three lines of text
Setup::gen2desc2 char* describing
Setup::gen2desc3 char* the second generator
Setup::useranalysis double(*) (none) function forSDP

(TH1D*,TH1D*)
Setup::nbins int[20][20] 120 number of bins in histograms

for all values
Setup::binmin double [20][20] 0.0 the lowest bin in histograms

for all values
Setup::binmax double [20][20] 2.0 the highest bin in histograms

for all values

Table 1: The most important settings ofMC-TESTER.

The complete list of parameters may be found in the Appendix. It may also be found in the
doc/README.SETUP file.

18

5.4 User-definedShape Difference Parameter algorithms

In order to employ the user-defined analysis routine, one has to write aROOT macro file inC++,
with a function which accepts pointers to two histograms ofTH1D class, and returnsdouble.
For example:

double MyTest(TH1D *h1, TH1D *h2)
{
double value=1.0 - h1->KolmogorovTest(h2);
return value;
}

An analysis function getscopiesof histograms from two generators as theh1 andh2 param-
eters, so it may perform any modifications on them (i.e. normalizations, divisions, etc.). The
function should be saved in the directoryanalyze/ in the file MyAnalysis.C. Its invocation
has to be uncommented inSETUP.C in analyze/, and invocation to the standard one has to be
commented out. One may also specify the full pathname to the analysis code. For details, see
the Appendix.

5.5 How to makeMC-TESTER run with other generators

5.5.1 The case ofF77

TheMC-TESTER routines may be called directly from theF77 code, though all the routines are
written inC++. ”F77 wrappers” are provided to access transparently theMC-TESTER routines.

As a starting point, one should followexamples-F77/tauola/tautest.F
andexamples-F77/pythia/pythiatest.f

From within aFORTRAN code, one has the access toMC-TESTER using theMCTEST subroutine,
which accepts a single, integer parameter:

• −1 : initialization; must be called at the beginning

• 0 : generation step; should be called every time whenHEPEVT is filled with a new event.

• 1 : finalization; closes output files,etc.

• 20 : makes a printout of the currently used event record.

Please refer to comments in the Appendix A.3 or in the/doc/README.SETUP.F77 for the
detailed description of otherF77 utility functions, which control theMC-TESTER setup.

In order to use theMC-TESTER routines, one needs to link twoMC-TESTER libraries and a
subset of theROOT libraries. TheMC-TESTER’s libraries may be found in thelib/ directory.
There exist both the static (.a) and dynamic (.so) versions of the libraries:

• libHEPEvent.so − contains theC++ interface toHEPevent record structures

• libMCTester.so − contains theMC-TESTER code.

19

The set of theROOT libraries needed byMC-TESTER may be obtained by executing

• $ROOTSYS/bin/root-config --libs .

One could also add the following line to aMakefile:

• ROOTLIBS := $(shell $(ROOTSYS)/bin/root-config --libs) ,

then specify the linking of$(ROOTLIBS). It may also be required to link theF77 library: one
should append-lg2c at a linking step, and useg++ as a linker rather thang77.

Before execution of a program linked withMC-TESTER, one should prepareSETUP.C file,
and put it in the same directory as executable file. For details, please refer to section 5.3.

The results of the generation step are put in the filemc-tester.root in the directory of the
executable. This output file should be moved (copied) to theMC-TESTER’s analyze/prod1/ or
analyze/prod2/ directory to proceed with the analysis step.

5.5.2 The case ofC++

Although we currently do not provide any example inC++, the infrastructure for connecting
MC-TESTER to aC++ generator is already in place.

Settings for theMC-TESTER parameters are done using a singletonSetup class. All the
settings in theSETUP.C macro file, as described in the section 5.3 refer to this object.

Inside the tested Monte Carlo analysis, it is sufficient to issue calls to the following three
routines:

• MC Initialize(): initializes MC-TESTER. All changes to theSetup should be com-
menced before a call to this function is invoked.

• MC Analyze(int particle): performs the analysis of the event record specified in the
Setup::EVENT variable;particle parameter should be thePDG code of the decaying
particle one wants to analyze2.

• MC Finalize(): writes the results to the output file.

One may also make use of the utility functionSetup::SetHistogramDefaults(int nbins,
double min bin, double max bin) to configure the size and the range of histograms (A.2.12).

As in the case ofF77 generators, one needs to link theMC-TESTER’s libraries and a subset of
ROOT libraries. TheHEPEvent library [9] is intended to serve as a universal interface to future
event record standards inC++. All event record standards included in the current version of
HEPEvent library, i.e.HEPEVT, LUJETS andPYJETS may directly be used in user’sC++ code.

2Please note that unlike in the case of the FORTRANMCTEST(0) function, one needs to specify the PDG code
– the code fromSetup is not passed automatically; i.e. one should useMC Analyze(Setup::decay particle);

20

6 Outlook

We have found thatMC-TESTER is useful for some tests of libraries of particles decays, but its
tests are not complete from the physics point of view. It also has some technical limitations. In
the following let us list these points, which can, in some cases, be fixed in the future versions
of MC-TESTER.

1. The program constructs distributions out of stable decay products of the particle under
study. It ignores intermediate states in the cascade formed from the decaying particle.

2. The program does not analyze distributions in Lorentz invariants built with the help of
totally antisymmetric (Levi-Civita) tensor. It is thus blind to some effects of parity non-
conservation.

3. Information on the spin state of the decaying particle is usually not available in common
blocks such asHEPEVT. To keepMC-TESTER modular, and to avoid a multitude of options,
we omit effects of decaying particle polarization. Our choice of distributions is blind to
these effects anyway.

4. The main advantage ofMC-TESTER is that it can be used with ‘any’ production generator
in an automated way, providing a tool for quick tests. However, the final state event record
has to be stored in one of the following common blocks:HEPEVT, LUJETS, PYJETS
[13, 14] of FORTRAN. Further possibilities, in particular data structures ofC++, are not
included at present.

5. If multiplicity of the particular decay channel is very high and/or there is a lot of decay
channels, the program may find it difficult to allocate memory. An analysis of a decay
channel with 8 or more decay products produces thousands of histograms, which causes
data files to be huge and the analysis step to be long. In the current version,the user is
not warnedabout possible problems. We observe that a machine with a sufficient amount
of memory may cope with an analysis of large-multiplicity decay channels; however, the
analysis process may take a long time (tens of minutes on a 2 GHz machine). There may
also be problems with producing a booklet with a few thousands of histograms: one may
run out of disk space. Therefore we advise users to restrain from the analysis of high
multiplicity decay channels in the current version ofMC-TESTER. In thePYTHIA example,
we switch off the decay channels with higher decay multiplicities (greater than 7).

6. For some settings/types of the linker, all the input event records (the common blocks
HEPEVT, LUJETS, PYJETS) may be loaded simultaneously, even if only one of them
is used. To avoid problems with memory allocation, their size should be checked and
adjusted to match declarations in the user’s program and/or other libraries loaded.

7. The present version ofMC-TESTER uses theROOT package for the purpose of histograming,
input/output, etc. Another similar package could in principle replaceROOT.

21

Thanks to the interactions with the first users, we envisage the extension of theMC-TESTER
with the following functionalities already in the next release:

• Allow automatic histogram re-binning (see variablenbins table 1) at the analysis step.
Any common integer divider for the dimensions of the two compared histograms will be
allowed.

• A list of the particles to be treated as stable as well as a list of the decay products not be
taken into account (e.g.π0 → γγ decays) will be introduced3.

• Introduction of a new parameter to limit the depth of a decay tree to be analyzed (e.g.
at most, only secondary decay products of the analyzed particle will be taken and then
treated as stable).

6.1 Recent updates and extensions

From the ”to be introduced” options listed above, we have managed to implement the suppres-
sion of decays of particles with certain PDG code (e.g.π0) into present release (v.1.1) of the
MC-TESTER (please refer to the Appendix A.2.17 for details).

The MC-TESTER has recently been proposed as the tool for the Linear Collider Workshop
[15] for comparisons of Monte Carlo predictions for 2→ n; (n=4,6,8) body generators. Some
changes were necessary.

First, the possibility to process the program input was introduced. The scattering event
of the form p1p2 → q1...qn can be replaced by the decay-like chain :P → p2q1...qn, where
P = p1 + 2× p2 . The first incoming particle (of momentump1) is replaced by theP, the
”mother” of all other particles, including second beam (p2). One obtains the event record with
decay tree-like structure, i.e. standard event record forMC-TESTER use. This extension is easily
customizable, the user may switch it on or modify using the C++ macro files: for details refer
to README.EVENT-ANALYSIS and README.LC files in the/doc directory. With the help
of this macro, the user may introduce other pre-processing of the event record as well. Note,
that in every case the event record will only be modified locally, insideMC-TESTER.

The second extension prepared for the Linear Collider Workshop allows to quantify the
difference of predictions of two programs forp1p2 (or p) → anythingprocess. This is done
with the help of two real numbers, which can be later analyzed if comparison of more than two
programs is performed.

The first numberT1 represents the difference due to branching ratios from program A and
B. It is calculated using the following formula:

T1 = ∑
i

max
(
|BrA

i −BrB
i |−κ

√
σ2(BrA

i)+σ2(BrB
i);0

)
, (9)

(statistical fluctuations subtracted, in a similar way as in formula 3). The second one:

T2 = ∑
i

BrA
i +BrB

i

2
(SDPmax

i) (10)

3At presentMC-TESTER constructs distributions from the final (stable) decay products of the analyzed particle.

22

consists of the weighted sum of maximal shape difference parameter calculated for all channels.
The weight is given by the average of the branching ratios (calculated fori channel).

The values ofT1, T2 are printed under the table of decay channels (page 2 of the book-
let). They are also stored/appended toMC-TESTER.DAT file in the analysis directory for further
use. The format of data in this file (Comma Separated Values (CSV), containing descriptions
of generators and theT1, T2 values) allows for easy processing by any data analysis tool or
programming language.

For the example of the Workshop-like use seeexamples-F77/pythia.Lin-Col directory.

Acknowledgments

We thank Thorsten Ohl for suggestions concerning functional extension of theMC-TESTER pack-
age. We thank Swagato Banerjee, Stanisław Jadach and Wiesław Płaczek for valuable remarks.

This work is partially supported by the BMBF (WTZ) project number POL 01/103. One of
the authors (T. P.) would like to thank the “Marie Curie Programme” of the European Commis-
sion for a fellowship.

23

A Appendix: MC-TESTER setup and input parameters

The values of the parameters used byMC-TESTER are controlled using theSETUP.C file. Some
parameters may also be controlled usingFORTRAN77 interface routines (Section A.3.1). This
provides a runtime control over all parameters, yet allowing the user not to haveSETUP.C at all.
One should note thatSETUP.C has always precedence over the values set usingF77 code: it is
always looked for in the execution directory.

Any parameter, not set using either of the methods, will have a reasonable default value,
which is quoted in the parameter’s description below.

A.1 Format and use of theSETUP.C file

Please refer to section 5.3

A.2 Definition of parameters in theSETUP.C file

There are three sets of settings insideMC-TESTER to be distinguished: the ones specific to the
generation phase, the ones specific to the analysis phase and the ones that are used in both
phases4. We describe them quoting the scope of their use.

A.2.1 Setup::decayparticle

Type: int
Scope: generation
Default: 15 (τ−)
DESCRIPTION: the PDG code of a particle, which decay channels we want to analyze.
Example of use:
Setup::decay particle = -521; //analyze B0 decays.

A.2.2 Setup::EVENT

Type: HEPEvent*
Scope: generation
Default: (HEPEVT)
DESCRIPTION: theF77 event format used by generator. It must be supported by the

HEPEvent library. The possible values are:HEPEVT (format: 4000 entries, double precision),
LUJETS (as in PYTHIA 5.7),PYJETS (as in PYTHIA 6)

To change the format of the event record standards used byMC-TESTER (the size of arrays
and the precision) please refer to theinclude/README file.

Example of use:
Setup::EVENT=&LUJETS;

4Some parameters from the generation ¿ phase (i.e. the description of generators) are stored inside ¿ an output
data file. However, again for reasons of runtime control, their ¿ values may be altered at the analysis time using
theSETUP.C file in ¿ the analysis directory.

24

A.2.3 Setup::stage

Type: int
Scope: generation, analysis
Default: -
DESCRIPTION: Indicates whether this is a generation or analysis stage, and which gener-

ator is being used: 0 = the analysis stage; 1 = the generation phase for the generator 1; 2 = the
generation phase for the generator 2.
This setting, is responsible for deciding which description specified by theSETUP.C settings
will be saved at the generation phase. It is automatically set to 0 at the analysis stage and needs
to be set by the user’s program to 1 or 2 at the generation phase (it is automatically reset to 1 if
0 occurs at the generation phase).5

Please note that at the analysis step one may freely replace the data files from the generation
steps. The description in theSETUP.C file referring to the generator 1 will be applied to the data
file in the subdirectoryanalyze/prod1/ and the ones that refer to the generator 2 will apply to
the data inanalyze/prod2/.

Example of use: (none)

A.2.4 Setup::gen1desc1 , Setup::gen1desc2, Setup::gen1desc3

Type: char*
Scope: generation, analysis
Default: [some default text with warnings]
DESCRIPTION: Up to three lines containing the description of the first of used generators.

These lines will appear on the first page of the booklet produced at the analysis step. Any
proper LATEX sequences may be introduced inside, however one needs to note the fact, that
\ (slash) sign is interpreted as an escape character inC/C++, so one needs to use\\ (double
slash) to introduce ”\” into output. See the example of the use below. When specified at the
generation step, this text will be saved in the output file. If the correspondingSETUP.C file
will not alter these variables at the analysis phase, the text will appear on the first page of the
booklet. However if these variables are being set inSETUP.C in the analysis phase, they will
have a precedence over the ones stored in the generation files, so one may control the text
appearing in the booklet without need to re-run the generation process.

Example of use:
Setup::gen1 desc 1="PYTHIA version 5.7, JetSet version 7.4; p-p at 14 TeV,

$Zˆ0$ production";
Setup::gen1 desc 2="$Zˆ0$ decays to $\\tauˆ-$ exclusively. No $\\pi$ decays,

No ISR/FSR.";
Setup::gen1 desc 3="{\\tt You may replace this text in SETUP.C file.}";

5One of the trick in which it may be introduced to two versions of the code, may be observed in theTAUOLA
example program, where the ”template”F77 code is preprocessed to produce two versions of the source codes,
each having a different stage set by means of theF77 interface (seedoc/README.SETUP.F77 for details).

25

A.2.5 Setup::gen2desc1, Setup::gen2desc2, Setup::gen2desc3

Type: char*
Scope: generation, analysis
Default: [some default text with warning]
DESCRIPTION: The same as above, for the second generator.
Example of use:
Setup::gen2 desc 1="TAUOLA LIBRARY: VERSION AA.BB";
Setup::gen2 desc 2=".............................";
Setup::gen2 desc 3="{\\tt You may replace this text in SETUP.C file in analysis

dir.}";

A.2.6 Setup::result1path

Type: char*
Scope: generation
Default: (set automatically to ”./mc-tester.root”)
DESCRIPTION: Sets the path and a file name of the data file produced at the generation

phase. Note that the path (absolute or relative)AND the filename needs to be specified. Also
take into account that the analysis step requires generation output files to be placed in certain
directories (analyze/prod1, analyze/prod2) and to be named ”mc-tester.root”.

Example of use:
Setup::result1 path = "/a/path/to/results/mc-tester.root"

A.2.7 Setup::result2path

Type: char*
Scope: generation
Default: (set automatically to ”./mc-tester.root”)
DESCRIPTION: The same as above, for the second generator.
Example of use:
Setup::result2 path = "../prod/mc-tester.root"

A.2.8 Setup::order matters

Type: int
Scope: generation
Default: 0
DESCRIPTION: This switch (values 0 or 1) specifies the behavior of a routine which

searches for decay channels inside event records. By default (value: 0), the order in which de-
cay products are written in an event record is not important. However for debugging purposes
it may be useful to distinguish the order used by two generators. In that case, for example, [pi-
pi0 pi+] will be other decay channel than [pi+ pi- pi0]. At default behavior, when the order is

26

not taken into account, particles are sorted according to their PDG code, and regrouped in such
a way that antiparticles stay just after corresponding particles. Example of use:

Setup::order matters = 1;

A.2.9 Setup::nbins

Type: 2-D array: int[MAXDECAY MULTIPLICITY][MAX DECAY MULTIPLICITY]
Scope: generation
Default: 120
DESCRIPTION: Setup::nbins[n][m] specifies the number of bins in histogram of m-body

invariant in the n-body decay mode. Look at the example below to get it clarified. For set-
ting default values to the whole range, use theSetup::SetHistogramDefaults() function
described below.
The maximum number of decay products is equal toMAX DECAY MULTIPLICITY−1, because ar-
rays inC/C++ are indexed starting from 0. Nevertheless, we follow the convention to refer to the
arrays indexes using the numbers of bodies in decay channel6. TheMAX DECAY MULTIPLICITY
constant is defined in thesrc/Setup.H source file, to be 20 . In case you need to analyze more
complex decay channels, you need to change this setting and recompileMC-Tester, however
we hope it is not very likely to happen.

Example of use:
// Assume that you need to analyze 5-body decays more thoroughly.
// In all 5-body decay channels, you are especially interested
// in analysis of histograms of mass of 3-body subsystems.
// Thus, you’d like to have the histograms more detailed:
Setup::nbins[5][3]=256;

A.2.10 Setup::bin min

Type: 2-D array: double[MAXDECAY MULTIPLICITY][MAX DECAY MULTIPLICITY]
Scope: generation
Default: 0.0
DESCRIPTION: Setup::binmin[n][m] specifies the minimum bin value for histogram of

m-body invariant in the n-body decay mode. Look at the example below and the description of
Setup::nbins above for clarification.

Example of use:
// Assume that you need to analyze 5-body decays more thoroughly.
// In all 5-body decay channels, you are especially interested
// in analysis of histograms of mass of 3-body subsystems.
// You know that the mass of all subsystems will not be lower
// that 3.0GeV, and so should be the lower bound of histograms
Setup::bin min[5][3]=3.0;

6Elements with indexes equal to 0 are valid from C/C++ point of view, but not used. Elements with indexes 1
are not used either: there are no 1-body decays.

27

A.2.11 Setup::bin max

Type: 2-D array: double[MAXDECAY MULTIPLICITY][MAX DECAY MULTIPLICITY]
Scope: generation
Default: 2.0
DESCRIPTION: Setup::binmax[n][m] specifies the maximum bin value for histogram of

m-body invariant in the n-body decay mode. Look at the example below and the description of
Setup::nbins above for clarification.

Example of use:
// Assume that you need to analyze 5-body decays more thoroughly.
// In all 5-body decay channels, you are especially interested
// in analysis of histograms of mass of 3-body subsystems.
// You know that the mass of all subsystems will not exceed
// 4.5GeV, and so should be the upper bound of histograms
Setup::bin max[5][3]=4.5;

A.2.12 Setup::SetHistogramDefaults(int nbins, double minbin, double max bin);

Type: function (static method of Setup class)
Scope: generation
DESCRIPTION: Sets up the default values for the number of bins, the minimum and maxi-

mum bin for all the histograms.
Note: the dimensions and ranges of histograms processed at analysis step need to be the

same!7

Example of use:
int default nbin=100;
double default min bin=0.0;
double default max bin=2.0;
Setup::SetHistogramDefaults(default nbin, default min bin, default max bin);

A.2.13 Setup::gen1path

Type: char*
Scope: analysis
Default: [set at the generation step to the current directory]
DESCRIPTION: This variable contains the path at which the first generator was run, there-

fore indicates where the result file comes from. It is being initialized at the generation step,
however one may change it at the analysis step to any other string. This path is printed at the
first page of the booklet. It is also used to search for a file named ”version”. If it exists at the
path pointed by this variable, its contents are also printed in the booklet. The version file is
supposed to contain a short, one line description of a version of the code used by the generator,

7The possibility to automatically re-bin the histograms will be introduced in next release ofMC-TESTER.

28

i.e. in TAUOLA example it contains the strings ”ALEPH” or ”CLEO” indicating two different
branches of the generator code, which are being tested.

Example of use:
Setup::gen1 path = "/my/new/path/of/first generator"

A.2.14 Setup::gen2path

Type: char*
Scope: analysis
Default: [set at the generation step to the current directory]
DESCRIPTION: The same as above, for second generator.
Example of use:
Setup::gen2 path = "/my/new/path/of/second generator"

A.2.15 Setup::useranalysis

Type: function pointer: double (*)(TH1D*,TH1D*)
Scope: analysis
Default: None - needs explicit specification inSETUP.C.
DESCRIPTION: Indicates a user-provided function to be used at the analysis step to calcu-

lateSDP. We recommend to adopt the choice of the function to your analysis. Please refer to
section 4.

Example of use:
///// Setup analysis code (load it from file and set up)
gInterpreter->LoadMacro("./MyAnalysis.C");
Setup::user analysis=MyAnalysis;
printf("Using Analysis code from file ./MyAnalysis.C \n");

A.2.16 Setup::userevent analysis

Type: pointer to object: UserEventAnalysis*
Scope: generation
Default: None - functionality switched off
DESCRIPTION: Allows to specify the object (inheriting from UserEventAnalysis class),

which performs custom operations on event record.
Please refer to filesREADME.EVENT-ANALYSIS andREADME-LC.
Example of use:
Setup::user event analysis=new LC EventAnalysis();

A.2.17 Setup::SuppressDecay(int pdg);

Type: function (static method of Setup class)
Scope: generation

29

DESCRIPTION: Suppresses decays of particles with PDG code given by the parameter.
TheMC-TESTER will treat these particles as if they were stable.

Note: a maximum of 100 types of particles may be specified;
Example of use:
Setup::SuppressDecay(111); // suppress pi0 decays

A.3 F77 interface of MC-TESTER.

A set ofFORTRAN77 subroutines was provided to allow modification of someMC-TESTER param-
eters. These functions are implemented inC++, but can be called from theFORTRAN program.

A.3.1 SUBROUTINE MCSETUP(WHAT, VALUE)

INTEGER WHAT
INTEGER VALUE
Description and parameters:
WHAT: specifies what kind of value needs to be set

• WHAT=0 : Event record structure to be used:

– VALUE=0 COMMON/HEPEVT/ in the 4k-D format

– VALUE=1 COMMON/LUJETS/ (i.e. Pythia 5.7)

– VALUE=2 COMMON/PYJETS/ (i.e. Pythia 6)

• WHAT=1 : the generation stage:

– VALUE=1 or 2 for the first and the second generator, respectively.
Look at theTAUOLA example – the stage is introduced to two version of the code
using a preprocessor.

• WHAT=2 :

– VALUE= the PDG code of a particle, which decays we analyze.

A.3.2 SUBROUTINE MCSETUPHBINS(VALUE)

INTEGER VALUE
Description and parameters:
Sets up the number of bins in histograms.

A.3.3 SUBROUTINE MCSETUPHMIN(VALUE)

DOUBLE PRECISION VALUE
Description and parameters:
Sets up the value of the minimum bin in histograms.

30

A.3.4 SUBROUTINE MCSETUPHMAX(VALUE)

DOUBLE PRECISION VALUE
Description and parameters:
Sets up the value of the maximum bin in histograms.

A.3.5 SUBROUTINE MCSETUPHIST(NBODY,NHIST,NBINS,MINBIN,MAXBIN)

INTEGER NBODY,NHIST,NBINS
DOUBLE PRECISION MINBIN,MAXBIN
Description and parameters:
Sets up the parameters for histograms ofNHIST-body subsystems inNBODY-bodies decay

channel.NBINS is the number of bins,MINBIN is the minimum bin value,MAXBIN is the maxi-
mum bin value.

31

References

[1] eds:, S. Jadach, G. Passarino, and R. Pittau, CERN-2000-009.

[2] S. Jadach, Z. Wa̧s, R. Decker, and J. H. Kühn,Comput. Phys. Commun.76 (1993) 361.

[3] M. Jėzabek, Z. Wa̧s, S. Jadach, and J. H. Kühn,Comput. Phys. Commun.70 (1992) 69.

[4] S. Jadach, J. H. K̈uhn, and Z. Wa̧s,Comput. Phys. Commun.64 (1990) 275.

[5] http://root.cern.ch/root/Availability.html .

[6] P. Golonka, T. Pierzchała, E. Richter-Wa̧s, Z. Wa̧s, and M. Worek, enlarged version of the
documenthep-ph/0009302, in preparation, to be submitted toComput. Phys. Commun.

[7] http://root.cern.ch/root/htmldoc/TH1.html#TH1:KolmogorovTest.

[8] http://root.cern.ch/root/htmldoc/src/TH1.cxx.html#TH1:KolmogorovTest.

[9] http://cern.ch/Piotr.Golonka/MC/HEPEvent.

[10] P. Golonka, Thesis for MSc. degree, FNPT, UMM Cracow,
http://cern.ch/Piotr.Golonka/MC/photos.

[11] E. Barberio, B. van Eijk, and Z. Wa̧s,Comput. Phys. Commun.66 (1991) 115.

[12] E. Barberio and Z. Wa̧s,Comput. Phys. Commun.79 (1994) 291–308.

[13] Particle Data Group Collaboration, C. Casoet al., Eur. Phys. J.C3 (1998) 1.

[14] T. Sjostrandet al., Comput. Phys. Commun.135(2001) 238.

[15] Extended Joint ECFA/DESY Study on Physics and Detectors for a Linear Electron-
Positron Collider ,http://www.desy.de/conferences/ecfa-desy-lcext.html

32

